Product Information

Haze Control 4000
Scattered Light Turbidity Analyzers

Haze Control DT9011
Laboratory Turbidity Analyzer
For over 30 years, optek has focused on measuring process liquids through their interaction with light in facilities all over the world. Although global, optek remains a family owned company with a team of more than 100 qualified, customer-driven professionals.

Our confidence is born from experience. With the expertise of more than 30,000 installations worldwide, our value to the customer resides in providing a superior product that pays back. High quality materials withstand the toughest process conditions including aggressive media, high temperature, and high pressure applications. Cleanability is ensured using high quality wetted materials, superior design, as well as sapphire optical windows.

As a global partner to various industries, optek offers the most advanced technologies including superior signal amplification, inline calibration support, PROFIBUS® PA, FOUNDATION™ Fieldbus and multilingual user interfaces for easy onsite operations.

Our support ensures long term satisfaction with programs such as “SpeedParts” and “SwapRepair” to provide our customers sustainable operations and minimized downtime at the lowest cost of ownership.

Conformity to international (ISO 9001), industry-specific (FM/ATEX approval) or company standards is easily achieved with optek. Wherever process composition is controlled, the name optek has become synonymous with world-class products and support.

Optimize your process with optek inline control.

See our various product and application brochures for further details
The Haze Control 4000 is a powerful, microprocessor based converter.
The advanced modular design has been specifically engineered for high precision haze (turbidity) measurements. The menu based software is easy to use and configure and available in German, English, French, Dutch, Spanish, Russian and Portuguese. The software includes adjustable signal damping, 16 linearization tables and advanced calculation capabilities. An integrated data logger captures vital process information for quality assurance and plant control records. This data is easily transferred to a PC via a RS232 port.

HC 4000 – Photometric converter
The Haze Control 4000 photometric converter is designed to operate with the optek DTF16 (11°/90° scattered light sensor) and additionally with AF16 or AS16, visible (VIS) or near-infrared (NIR) based sensors. The graphic display can show absorbance, turbidity and concentration in real-time and in any unit of measure such as EBC, FTU, ppm (DE), NTU, ASBC and Helms. These measurements may also be displayed as text, bar graphs or trend values. A factory zero point is implemented for the scattered light sensors. A secondary user zero for additional offset is included, as well as a slope and shift adjustment. This manual adjustment can be used to compensate for long term process related disturbances.

<table>
<thead>
<tr>
<th>Unit</th>
<th>EBC Correlation</th>
<th>90° Side Scatter</th>
<th>11° Forward Scatter</th>
<th>0° Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBC</td>
<td>1</td>
<td>0 - 25</td>
<td>0 - 25</td>
<td>0 - 500</td>
</tr>
<tr>
<td>FTU</td>
<td>4 = 1 EBC</td>
<td>0 - 100</td>
<td>0 - 100</td>
<td>0 - 2,000</td>
</tr>
<tr>
<td>NTU</td>
<td>4 = 1 EBC</td>
<td>0 - 100</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ASBC-FTU</td>
<td>69 = 1 EBC</td>
<td>0 - 1,725</td>
<td>—</td>
<td>0 - 34,500</td>
</tr>
<tr>
<td>Helms</td>
<td>40 = 1 EBC</td>
<td>0 - 1,000</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ppm (DE)</td>
<td>6.4 = 1 EBC*</td>
<td>—</td>
<td>0 - 200</td>
<td>—</td>
</tr>
</tbody>
</table>

* non linear correlation

EBC = European Brewery Convention
FTU = Formazin Turbidity Units
NTU = Nephelometric Turbidity Units
ASBC = American Society of Brewing Chemists
Helms = Turbidity Unit
ppm (DE) = Parts per Million (Diatomaceous Earth)
The Haze Control 4000 is available in various configurations to meet the exact needs of your process.

- Multiple photometric sensors
- Multiple parameter sets
- Multiple linearization tables
- Data logger
- Factory zero for scattered light sensors
- Remote control

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTF16</td>
<td>4301</td>
</tr>
<tr>
<td></td>
<td>4321</td>
</tr>
<tr>
<td></td>
<td>4351</td>
</tr>
<tr>
<td></td>
<td>4361</td>
</tr>
<tr>
<td></td>
<td>4402</td>
</tr>
<tr>
<td></td>
<td>4422</td>
</tr>
<tr>
<td></td>
<td>4452</td>
</tr>
<tr>
<td></td>
<td>4462</td>
</tr>
</tbody>
</table>

Display Modes
- 1 - 4 simultaneously displayed values (configurable)
- Numeric with bar graph and alarm setting
- Trendline

Software Tools
- 8 parameter sets (incl. range, alarm, display, etc.)
- 16 linearization tables (max. 11 points)
- 8 offset and slope sets
- Auto zero (local or remotely activated)
- Factory zero setting (scattered light sensors only)
- Password protection (3 levels and none)
- Memory (non-volatile) retains all configurations and logged data

Remote Control
- Parameter set (e.g. range)
- Zero
- Hold
HC4000 Configuration

<table>
<thead>
<tr>
<th>Detector inputs (optek)</th>
<th>4301</th>
<th>4321</th>
<th>4351</th>
<th>4361</th>
<th>4402</th>
<th>4422</th>
<th>4452</th>
<th>4462</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Power supply 115/230 or 24 V</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Remote-IN: (Zero, Range, Hold)</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay-outputs</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Failsafe-relay (active)</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Lamp outputs (optek)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>mA-outputs (0/4 - 20 mA)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>mA-inputs (4 -20 mA)</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROFIBUS® PA</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>FOUNDATION™ Fieldbus</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROFIBUS® PA
- Fulfills application profile for process automation (version 3.01)
- Cyclic:
 - 4 Measuring outputs, each with 4x limit and status
 - Status of all 4 relays
 - 2 Measuring inputs
- Acyclic:
 - Zero, Hold, Product change, Monitors, Error codes
 - GSD, EDD file and DTM for FDT interface provided
 - Interface to profibus DP segment using a segment coupler

FOUNDATION™ Fieldbus
- Fulfills FOUNDATION™ Fieldbus H1 (IEC 61158-2)
- Registered function blocks: 1xRB, 8xAI(s), 4xDI(s), 2xAO(s)
- H1 Profile class: 31P, 32L
- H1 Device class: basic, link master
- 4 Measuring outputs with status
- 4 Relays with status
- 2 Measuring inputs
- With optek specific resource block parameter: Zero, Hold, Product change
- Device description (DD) and capabilities files provided
HC4000 - Accessories

The PC-Transfer software allows communication between converter and PC via a RS-232 port. Documentation and set-up including identical set-up of multiple converters are made simple.

Converter to PC:
- Parameter set
- Trend data online
- Data logger

PC to converter:
- Parameter set
- Software update

S19-42
Wall mount housing (IP65)
Material: stainless steel 1.4301 / SS304
A: 301 mm (11.9 in.)
B: 340 mm (13.4 in.)
C: 237 mm (9.4 in.)

B19-42
Wall mount housing (IP66)
Material: plastic (ABS)
A: 287 mm (11.3 in.)
B: 353 mm (13.9 in.)
C: 147 mm (5.8 in.)
D: 237 mm (9.4 in.)

T19-42
Table top housing
Material: aluminum
A: 150 mm (5.9 in.)
B: 260 mm (10.2 in.)
C: 320 mm (12.6 in.)

Front-Kit
Front panel mounting (IP65 - front only)
(not shown)

B-ADS / B-ADS-WS Air Drying System
Condensation can affect any optical instrument operating in an environment where process piping is colder than ambient air.
For this reason optek sensors are equipped with air purge connections. If no dry and dust free air is available, the B-ADS / B-ADS-WS (Beko Air Drying System) can be used to condition supplied air.
Technical Data HC4000

Housing
- 19"-version for mounting in control cabinets 3 U / 42 HP
- dimensions: W 213.0 mm (8.39 in.) H 128.4 mm (5.06 in.) D 230.0 mm (9.05 in.)
- material: stainless steel / polyester / silicone / glass / diverse plastics
- protection: front IP40 / rear IP20 (mains supply secured against accidental touching)

Display
- LCD graphic display black on white (240 x 128 pixel), LED background illuminated

Operation
- 18-button keyboard

System clock
- accuracy approx. 1 minute/month (battery life approx. 15 years)

LED
- 1 LED (green): power on
- 1 LED (red-flashing): system failure
- 3 LEDs (yellow): alarm I, II, III

Data logger
- 4 parallel measuring values (ring buffer with approx. 25,000 data points x 4)
- (interval: 1/second - 1/hour)

Sensor-inputs
- optional: 3 or 4 for optek photometric sensors

mA-inputs
- optional: 2 x 4 - 20 mA (functionally galvanically isolated)
- accuracy: < 0.5 %
- resolution: < 0.05 %
- load: < 200 Ohm

Remote-inputs
- optional: 7 x 24 V (19 ... 29 V DC), typically 6.0 mA for remote range setting, remote zero, remote hold

Profibus® PA Interface
- optional: Profibus® PA profile, version 3.01, amendment 2

FOUNDATION™ Fieldbus Interface
- optional: FOUNDATION™ Fieldbus H1 (IEC 61158-2)

Sensor lamp-outputs
- 1 or 2 lamp supply for optek photometric sensors
- 4.5 ... 8.5 V DC

mA-outputs
- 2 or 4 x 0/4 - 20 mA (NAMUR)
 - (functionally galvanically isolated)
 - accuracy: < 0.5 %
 - resolution: < 0.05 %
 - load: < 600 Ohm

Relay-outputs
- 3 independent software-configurable relay contacts
 - accuracy: 0 - 50 V AC, 0 - 75 V DC, 0 - 2 A
 - - for alarm or status feedback
 - - initiation delay configurable: 0 - 999 sec.

Failsafe-output
- 1 SPDT contact to alarm in case of lamp or system failure (active)
 - 0 - 50 V AC, 0 - 75 V DC, 0 - 2 A

Serial communication
- RS232 bi-directional interface on front panel (with software package optek PC-transfer)
 - upload and download of configuration, download of data logger content

Cable lengths (sensor)
- 2, 3, 5, 10, 15, 20, 30 ... 100 m
 - (7, 10, 16, 33, 49, 66, 98 ... 328 ft)
 - cable length > 100 m on request up to 1,000 m (3,280 ft)
- sensors: AS16: max: 50 m

Power supply
- 115 / 230 V AC, selectable (93.5 - 132 / 187 - 264 V AC, 47 - 64 Hz) or
 - 24 V AC / DC (AC: 20.4 - 26.4 V AC, 47 - 64 Hz; DC: 20.4 - 28.8 V DC)
 - power consumption: < 50 VA

Ambient conditions
- temperature during operation (no direct sunlight):
 - -40 - 55 °C (14 - 131 °F)
 - with optional stainless steel housing S19-42 (IP65):
 - temperature: -20 - 45 °C (-4 - 113 °F)
 - with optional plastic housing B19-42 (IP66):
 - temperature: -30 - 40 °C (14 - 104 °F)
 - temperature during transport (no direct sunlight):
 - -20 - 70 °C (-4 - 158 °F)

Software languages
- English, German, French, Spanish, Dutch, Portuguese, Russian

Data given are subject to changes without prior notice.
Turbidity Sensor DTF16

The DTF16 is a precision turbidimeter featuring an advanced, triple-beam scattered light optical design. It precisely measures light at a forward angle of (11°) and side angle of (90°) with simultaneous light compensation.

The DTF16 effectively measures a broad range of particles inline that contribute to turbidity and fine haze while providing the Nephelometric results required by most QA/QC guidelines. The combination of precise scattering light optics and optimized sensor body geometry prevents external or internal stray light from affecting the measurement.

Variable disturbances, such as sample color, color changes and lamp variations have no influence on the measured value.

The sensor body is constructed of sanitary stainless steel. The DTF16 O-rings are made from FDA-approved EPDM. The optical windows are made from a single crystal sapphire providing superior resistance to abrasive and corrosive media. Armatures are available in nominal sizes of DN50 - DN125. Weld ends allow adaptation to any pipe/tube standard.

The DTF16 features a drift-free factory zero point, eliminating the need for calibration or zero adjustments.

Typical Applications:
- Filter control
- Filter break-through
- Filter backwash

See our various product and application brochures for further details.
<table>
<thead>
<tr>
<th>Technical Data</th>
<th>DTF16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td></td>
</tr>
<tr>
<td>Measurement principle</td>
<td>1-Channel Absorption of light and 2-Channel Scattering of light (11° and 90°)</td>
</tr>
<tr>
<td>Measurement wavelength</td>
<td>590 nm - 1100 nm</td>
</tr>
</tbody>
</table>
| Detector(s) | 1 silicon photodiode (hermetically sealed) (Abs.)
1 silicon photodiode (hermetically sealed) (90°)
8 silicon photodiodes (hermetically sealed) (11°) |
| Measuring range NIR-Absorption | any measuring range between
0 - 0.1 to 500 EBC
0 - 0.4 to 2,000 FTU |
| Measuring range Scattered Light (11°) | any measuring range between
0 - 0.1 to 25 EBC
0 - 0.4 to 100 FTU |
| Measuring range Scattered Light (90°) | any measuring range between
0 - 0.1 to 25 EBC
0 - 0.4 to 100 FTU / NTU |
| Optical path length | 80 mm standard |
| Calibration | factory calibration (11° and 90°)
0 - 25 EBC / 0 - 100 FTU in standard sensor body (OPL = 80 mm) |
| Light source | special halogen lamp 5.0 V DC, 970 mA
typical life span: 1.5 to 3 years (12,500 to 25,000 hours) |
| Resolution | < ± 0.05 % of respective measuring range |
| Repeatability | < ± 0.3 % of respective measuring range |
| Linearity | < ± 0.5 % of respective measuring range (with standard solution, specific to application) |
| Protection | all optical parts have an IP rating of IP65 or higher |
| **Sensor body** | |
| Material | Stainless steel 1.4435 (SS 316L), Plastic TFM4215, others on request |
| Line size | 2 in. to 5 in. (DN 50 to DN 125), others on request |
| Process connection | butt weld tube ends:
DIN 11850, ISO 1127, IPS (Schedule 5), OD (BS 4825-1), others on request
(e.g. Flange (DIN, ASME), Tri-Clamp) |
| Process pressure | 10 mbar to 20 bar (0.15 psi to 280 psi) |
| Windows | 3-Sapphire Biotech (type 3A) |
| Window gaskets | EPDM (FDA / USP Class VI), others on request |
| **Temperature ratings** | |
| Process temperature | permanent: 0 - 120 °C (32 - 248 °F) / peak 15 min/day: 0 - 150 °C (32 - 302 °F) |
| Ambient temperature | operation: 0 - 40 °C (32 - 104 °F)
transport: -20 - 70 °C (-4 - 158 °F) |

Pressure and temperature ratings specified herein may be subject to limitations - see instruction manual. The appropriate choice of material for all wetted parts is the sole responsibility of the user. Data given are subject to changes without prior notice.
The AS16 series probes are high precision sensors measuring turbidity (AS16-N) or color (AS16-F) for use in various industries. The sensors are designed for inline operation and provide accurate concentration measurements with remarkable repeatability, linearity and resolution.

AS16
The AS16 series offers the high-end range of optek probe sensors. A wide selection of different optical path lengths and insertion depths combined with optional calibration filters and electro-polished stainless steel meet the requirements of the biotechnology and beverage industries.

NIR-Absorption (Turbidity)
VIS-Absorption (Color)
A special tungsten lamp produces a constant light beam that passes through the process medium. The attenuation of the light intensity, caused by absorption and/or scattering by dissolved and undissolved substances, is detected by a sealed silicon photodiode. AS16-N uses light from 730 - 970 nm to measure solids concentration independent from color or color changes (e.g. yeast concentration in beer during tank transfer).
AS16-F uses a specific wavelength in the visible spectrum to measure color in liquids with little or no turbidity (e.g. beer in water during phase change).

OPL
Special optical windows are made from a single crystal sapphire, providing superior resistance to all abrasive and corrosive media. Optek's superior manufacturing techniques allow mounting the windows without gaskets or glue for a lifetime without maintenance. The appropriate choice of the optimal OPL (optical path length = distance between the windows) supports all measurement requirements, e.g. low/high measuring ranges at highest resolution.

NIST-traceable
NIST-traceable calibration accessories (AS16 only) provide absolute measurement confidence (for details refer to our Control 4000 product information brochure).

Typical Applications:
- Filter feed monitoring (AS16-N)
- Beer/water phase separation (AS16-F)

See our various product and application brochures for further details.
Technical Data

<table>
<thead>
<tr>
<th>Measurement</th>
<th>AS16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement principle</td>
<td>1-Channel Absorption of light</td>
</tr>
<tr>
<td>Detector</td>
<td>1 silicon photodiode (hermetically sealed)</td>
</tr>
</tbody>
</table>
| **Measurement wavelength** | • AS16-N: 730 - 970 nm
• AS16-F: 430, 550 or 620 nm |
| **Measuring range** | AS16-N: any measuring range between 0 - 0.05 to 6 CU
AS16-F: any measuring range between 0 - 0.05 to 2 CU (depending on wavelength) |
| **Optical path length** | 1, 5, 10, 20 or 40 mm |
| **Calibration** | CU (concentration units)
application specific calibration |
| **Light source** | special incandescent tungsten lamp 5.0 V DC, 970 mA
typical life span: 3 to 5 years (25,000 to 40,000 hours) |
| **Resolution** | < ± 0.05 % of respective measuring range |
| **Repeatability** | < ± 0.5 % of respective measuring range |
| **Linearity** | < ± 1 % of respective measuring range
(specific to application) |
| **Protection** | all optical parts have an IP rating of IP65 or higher |
| **Material** | wetted parts: stainless steel 1.4435 (SS 316 L)
dF < 1 %, BN2
surface: electro-polished Ra < 0.4 µm
housing: stainless steel 1.4571 (SS 316 Ti) |
| **Port connection** | thread G1-1/4 in., ISO 228/1
for port AS25 (similar Ingold-port)
diameter: 25 mm (D = 25 H7)
O-ring groove for 30 mm and for 60 mm port length |
| **Port gasket** | O-ring 18.64 x 3.53 mm EPDM (FDA / USP Class VI) |
| **Insertion depth** | 35 mm (1.38 in.) + OPL
at a port length of 60 mm (2.36 in.)
135 mm (5.31 in.) + OPL
at a port length of 60 mm (2.36 in.) |
| **Process pressure** | 10 mbar to 20 bar (0.15 psi to 290 psi) |
| **Windows** | sapphire (seal-less) |
| **Window gaskets** | n/a |
| **Installation accessories** | weld-in ports, Varivent adapter (50.00), clamp adapter (1.5 and 2.0 in.)
optek T-pieces DIN 11850 (DN50 - DN100), optek T-pieces OD (BS4821-1) (2.0 - 4.0 in.) |

Temperature ratings

| **Process temperature** | permanent: 0 - 100 °C (32 - 212 °F)
peak 60 min/day: 0 - 150 °C (32 - 302 °F) |
| **Ambient temperature** | operation: 0 - 40 °C (32 - 104 °F)
transport: -20 - 70 °C (-4 - 158 °F) |

Calibration

| **Calibration adapter** | none |
| **Calibration adapter OPTION VB** | Filter adapter FH03
for calibration filter used for sensor verification |

Pressure and temperature ratings specified herein may be subject to limitations - see instruction manual.
The appropriate choice of material for all wetted parts is the sole responsibility of the user.
Data given are subject to changes without prior notice.
Laboratory Turbidimeter DT9011

DT9011 Haze Control Laboratory Turbidimeter

The optek DT9011 is a precise, laboratory-quality turbidimeter. The DT9011 features an advanced, triple beam scattered light optical design, measuring forward scatter (11°), side scatter (90°), and direct (0°) light. The DT9011 effectively measures a broad range of constituents that contribute to turbidity and fine haze in consumer products such as beer.

The powerful, easy to use DT9011 software allows the storage of data for up to 32 different products. This data includes product parameters, measuring ranges, bottle types and more.

The integrated data logger records all measurements and parameters. The data logger can store up to 25,000 data sets. The data tables can be displayed directly on the DT9011 or transferred to a PC using the optional PC-Transfer Software.

The sample is submerged in a water bath and sampled 250 times in one rotation resulting in advanced data analysis. Using this method, the effects of bottle color and shape, as well as scratches, seams and other imperfections will have no influence on the measurement. The circulating water bath and a drift-free, factory zero point ensure sensitivity and repeatable measurements.

Typical Industries:
- Breweries
- Distilleries
- Wineries
- Soft Drinks
- Juice Processors
- Bottled Water
- Malt Beverages

See our various product and application brochures for further details

Model DT9011 Dual Channel Scattered Light (11° and 90°)

1. Lamp module
2. Optics module
3. Windows
4. Sample chamber with bath turntable
5. Focusing optics
6. Eight 11° detectors
7. Detector 0° (Abs.)
8. Optics module 90°
9. Detector 90°

Dimensions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **Cuvettes** | diameter: Ø 58.0 - 72.5 mm (2.28 - 2.85 in.)
| | wall thickness: minimum 2 mm (0.08 in.)
| | height: 140 - 280 mm (5.5 - 11.0 in.)
| **Bottles** | diameter: Ø 58.0 - 72.5 mm (2.28 - 2.85 in.)
| | height: 140 - 280 mm (5.5 - 11.0 in.)
| | color: green, brown, clear
| **Bottle insert** | adapter Ø 61 mm (2.40 in.); bottles Ø 58.0 - 60.5 mm (2.28 - 2.38 in.)
| | adapter Ø 64 mm (2.52 in.); bottles Ø 60.5 - 63.5 mm (2.38 - 2.50 in.)
| | adapter Ø 77 mm (3.03 in.); bottles Ø 63.5 - 66.5 mm (2.50 - 2.62 in.)
| | adapter Ø 70 mm (2.76 in.); bottles Ø 66.5 - 69.5 mm (2.62 - 2.74 in.)
| | without adapter: bottles Ø 69.5 - 72.5 mm (2.74 - 2.85 in.)

Data given are subject to changes without prior notice.
Technical Data

Measurement

<table>
<thead>
<tr>
<th>Measurement principle</th>
<th>2-Channel Scattering of light (11° and 90°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement wavelength</td>
<td>590 nm - 1100 nm</td>
</tr>
<tr>
<td>Detectors</td>
<td>1 silicon photodiode (hermetically sealed) (Abs.)</td>
</tr>
<tr>
<td></td>
<td>1 silicon photodiode (hermetically sealed) (90°)</td>
</tr>
<tr>
<td></td>
<td>8 silicon photodiodes (hermetically sealed) (11°)</td>
</tr>
</tbody>
</table>

Measuring range

Bottles: any measuring range between	0 - 1 to 25 EBC (11° and 90°)
	0 - 4 to 100 FTU (11°)
	0 - 4 to 100 FTU / NTU (90°)
Cuvettes: any measuring range between	0 - 1 to 100 EBC (11° and 90°)
	0 - 4 to 400 FTU (11°)
	0 - 4 to 400 FTU / NTU (90°)

Calibration

- Factory calibration (11° and 90°)
- User calibration possible, at any time reversible to factory calibration
- Comparison between factory settings and user settings possible

Light source

- Special halogen lamp 5.0 V DC, 970 mA
- Typical life span: 1.5 to 3 years (12,500 to 25,000 hours)

Resolution

- 0 - 1 EBC or 0 - 4 FTU: < ± 1 % of respective measuring range
- 0 - 100 EBC or 0 - 400 FTU: < ± 0.05 % of respective measuring range

Repeatability

< ± 1.0 % in cuvette

Linearity

< ± 1.0 % in cuvette

Protection

- Table case front IP40

System

Material

- Housing: stainless steel 1.4301 (SS304)
- Dimensions: W 381 mm (15 in.), H 394 mm (15.5 in.), D 445 mm (17.5 in.)
- Measurement chamber: POM C
- Tubing: PA, PVC
- Fittings: stainless steel, brass

Water bath

- Overflow drain valve (flow regulation)
- Sensor for minimum water level
- Volume: 600 ml (20 fl oz)
- Flow: 5 to 15 l/h with circulation

Rotation system

Standard

Display

- LCD graphic display black on white (240 x 128 pixel),
- LED background illuminated

Operation

- 18-button keyboard

System clock

- Accuracy approx. 1 minute/month (battery life approx. 15 years)

LED

- 1 LED (green): power on
- 1 LED (red-flashing): system failure / lamp failure
- 2 LED's (yellow): alarm I, II

Serial communication

- RS232 bidirectional interface on the back (with software package optek PC-transfer)
- Up- and download of configuration, download of data logger content

Power supply

- 115 / 230 V AC, selectable (93.5 - 132 / 187 - 264 V AC, 47 - 64 Hz)
- Consider an external release device
- Power consumption: < 50 VA

Windows

- Borosilicate glass

Gaskets

- Buna, Viton®

Temperature ratings

<table>
<thead>
<tr>
<th>Water bath temperature</th>
<th>10° C to 40 °C (50° F to 104 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>operation: 0 - 40 °C (32 - 104 °F)</td>
</tr>
<tr>
<td></td>
<td>transport: -20 - 70 °C (-4 - 158 °F)</td>
</tr>
</tbody>
</table>

Data given are subject to changes without prior notice.
Filter Control 11° / 90°
The optek Haze Control / DTF16 relies on a dual angle scattered-light measurement for precise quality control during final filtration independent of color and color changes. Using this sensor downstream of the filter detects filter breakthroughs, preventing “out of spec” product while ensuring product quality and clarity at each filtration step.

Feed Monitoring
Using an optek AS16-N or AF16-N, the turbidity in the feed line can be monitored, allowing precise feed control while preventing filter clogging or blinding. This additional sensor can be connected to your Haze Control / DTF16 system without the need for an additional converter.

Filter Backwash Optimization
The optek AS16-N or AF16-N used for feed monitoring can also be used to optimize your filter backwash process by measuring the turbidity in the water, saving time, energy and conserving water usage.

Filter Aid Dosage
Dosage of filter aids like Kieselguhr or PVPP can be controlled with optek absorption or scattered-light sensors. Optimizing filter aid usage reduces costs and at the same time ensures consistent product quality.

Interface Detection
The Haze Control / DTF16 system may also be paired with an AS16-F or AF16-F to measure the color of your beer. This measurement controls the phase separation between beer and water ensuring faster product changeovers while maintaining product quality and minimizing product losses.

Filter Setup Monitor
Using the 0° absorption channel of the sensor DTF16, turbidity up to 500 EBC can be measured, allowing you to monitor and control the filter pre-coat cycle. This provides an additional opportunity for filter optimization.
Why use an 11° measurement?
Forward scattered light is particle size sensitive and its strengths are efficiently detecting filter breaks, filtrate turbidity and detecting particles such as yeast, trub and Kieselguhr, even at extremely low concentrations. 11° measurements are very sensitive in this regard and correlate well to actual non-dissolved solids content, essential for proper filtration control and optimization.

Why is 11° better than the 25° measurement?
Scattered light at 11° is more specific due to a higher signal and will detect abnormal particulate faster without the influence from colloidal material common at 25°. This also aids in the prompt identification of filtration problems.

Why use a 90° measurement?
Turbidity measurements at an angle of 90° are highly sensitive to colloids and are used as a quality check for the clarity of the beer. Mistakenly, 90° techniques have been used for process evaluation and filter control but do not correlate to actual non-dissolved solids content. Modern breweries can now measure this parameter inline and thus automate the release of beer.

Why use a 0° absorption measurement?
Using the 0° absorption channel allows measurements at higher turbidity levels, well beyond the range of the 11° or 90° results, allowing monitoring and control of the filter pre-coat cycle as well. This provides an additional opportunity for filter optimization.

Why is the reading of lab and process sometimes different?
The beer in the pipe is homogeneous, under pressure, and at a constant temperature. In the lab, the samples have time to change, solids may precipitate, and temperature changes will affect the solubility of colloids and with that the measurement. In addition, differences in the optical configurations of the instruments themselves, along with the calibration methods used, have an influence on comparative results.
Please visit our website for contact details of our local distributors in other countries.
www.optek.com